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A classical model representing several hysteresis phenomena (as they appear in ferro- 
magnetism and in porous media filtration, e.g.) is considered here. It is demonstrated that the 
parameters of this model can be determined with any desired precision from suitable 
experiments. We use the mathematical model of hysteresis as introduced by Preisach, who 
explained the magnetization curve and saturation loop of the material by a superposition of 
elementary rectangular loops. A certain properly defined measure is responsible for the shape 
of the loop. We describe a new algorithm which determines this measure completely. Our 
results are related to previous papers of Biorci and Pescetti. Extensive numerical com- 
putations conclude our investigations. 0 1988 Aczdemic Press, Inc. 

1. INTRODUCTION 

In this note we deal with an algorithm for the identification of nonlinearities of 
hysteresis type in rather general deterministic systems. The mathematical mo 
be chosen is crucial in our approach. It has turned out that Preisach’s idea of 
describing hysteresis is also very convenient for our purpose. From input-output 
measurements we are able to compute completely the distribution of the thresholds 
of the elementary rectangular loops in the “Preisach plane.” Hysteresis pheno 
appear in several fields: in ferromagnetism (studied in Preisach’s paper, e.g.), in 
filtration through porous media, in elasto-plasticity, in biology, etc. However, until 
now only comparably few mathematical papers have been published in this field. 
The state of the art up to 1983 is summarized in a recently published book of 
Krasnoselskii and Pokrovskii [ 11 which will also appear in English translation 
soon. As far as the inverse problem of identifying hysteresis loops from 
measurements is concerned, we do not know of more than a dozen more or less 
mathematically oriented published contributions. Our work is related to previously 
published papers of Biorci and Pescetti [4-61, who give an analytical theory of 
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ferromagnetism using Preisach’s approach. They are able to develop an algorithm 
for determining the “Preisach measure” at any point in the “Preisach plane” 
arbitrarily accurately. Our method, on the other hand, determines the whole 
measure by an approximation technique which is based on a finite number of 
optimally chosen input-output experiments, One should also mention the paper of 
Andronikou, Bekey, Hadaegh [2] which deals with the identifiability of a damped 
harmonic oscillator containing hysteretic restoring forces. Their results are concer- 
ned with structural identifiability conditions in the sense of Bellman and Astrom 
E3]. Although their hysteresis model differs from ours, our algorithm applies to 
their example as well. But the aspect of structural identifiability is not the object of 
our present investigations. 

Our paper is organized as follows: In Section 2 we introduce the Preisach model 
of hysteresis and indicate some important properties. Here we just report the main 
mathematical results, referring to Visintin [S, lo] for details. Section 3 contains the 
approximation scheme for the measure and formulates the special identification 
procedure we want to present. Finally, Section 4 has some numerical experiments 
demonstrating the practicability of our algorithm. Some concluding remarks give 
hints for further applications of our identification method. 

2. THE PREISACH MODEL 

Let p = (p, , p?), p, < p,, be a couple of thresholds of an elementary rectangular .-, ._ 
hysteresis loop in the (~,LP~)-plane.We introduce the “Preisach plane” 9, 

~:={P=(Pl,P*)~~*IPl<P*}, 

and we define the “relay operator” f, for each p E 9’. 
Let T> 0 and s E C’[O, T]. For any 5 E (0, 1 }, the measurable mapping 

fp(& 0: co, Tl -+ (09 1) 

is defined by 

1 

0 if s(O) <‘pl, 
CfJs, 4)1(O) := 5 if p1<so<p2, 

1 if s(O) > p2, 

and for t E (0, T], setting A, := {z E (0, t] 1 s(z) = p1 or s(r) = p2}, by 

if A,=@, 
if A,#(21 and s(maxA,)=p,, 
if A, # @ and s(max A,) = p2. 

(2.1) 

(2.2) 
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For any p E 9, this construction defines a (discontinuous) operator f, : C"[O, T]i x 
(0, 1 > + L”(0, T). This may represent the behaviour of a relay with hysteresis: 

- p1 and p2 are the thresholds, 
- s and f,,(s, t) are the “input” (or “control”) and “‘output” (or “state”) 

variables, respectively, 
- 5 is the initial state of the relay. 

More general hysteresis representations are obtained by considering averages of 
‘“relay operators” f, with different thresholds p, according to a prescribed “relay 
density.” 

We fix a a-algebra JX? of measurable subsets of 9” and consider a family Y of 
d-measurable applications from 9 into (0, 1). Let p be a positive finite measure 
on d. With respect to ,u, the “Preisach hysteresis functional” M, is define 
follows : 

For any “input function” s E C’[O, r], any “initial configuration” +vQ E Y and any 
ts [IO, T], we set 

(here wi represents the initial state of the relay characterized by the threshol 
p = (pl, p2)). This construction defines the (in general discontinuous) “Preisach 
hysteresis operator” M,: C’[O, T] x Y -+ L”(0, T). However, the following proper- 
ties were proved by Visintin in [8]: 

PRoPos1~10i-4 1. If 

p has no masses concentrated either in points or along segments parallel 
to the axes, 

then 

M,(s, w”) E C’CO, Tl, for all s E C”[O, T] and all w” E Y, WI 

the operator st-+ M,(s, w’) is continuous in C’[O, T] with respect to 
the uniform convergence. (2.6) 

A similar, but weaker, result was proved by Friedman and Hoffmann [S]. 
Henceforth we shall fix the initial state w” by setting 

wo *= 
i 

1 if pl+pz<O, 
p‘ 0 if p1+p2>0. WV 

This means, we assume that the material is initially in the virginal state. In the case 
of ferromagnetism, this means that the material has not yet experienced any 
magnetization (Fig. 1). 
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FIG. 1. Initial state of the relays. 

Then the argument w” will be substituted into the relay operator fp and, 
correspondingly, into the hysteresis functional M,. However, all the results we get 
can be extended to the case of a general w” E Y. 

One of the main advantages offered by the Preisach model is its geometrical 
interpretation. This allows a better understanding of its properties and can be useful 
for computations. We sketch the main features here, referring to Visintin [S, lo] for 
details. 

For any fixed SE C’[O, r] and any TV [0, T], we set 

Pp := Cf,(s, $31(f) 

for all p E 8. Then p E 9, and 9 defines a partition (Y’,’ , Y,“> of 9 : 

9; := {pE.5qpPp= l}, 

9;:= {p&!?qpPp=O}. 

It is easy to verify that 

(2.8) 

(2.9) 

(PE~lP,>~,,P,>P"z}C~pO, for all PEY~O, 

{PE~lPp,<p",,PZ<~z}C~p+, for all 
(2.10) 

p E .Y’p’ . 

Hence the common boundary 9 := a9; n &Yj is an antimonotone graph in the 
Preisach plane 9’ as indicated in Fig. 2. More precisely, we have 

PROPOSITION 2 (Visintin [lo]). Let us assume that the initial configuration is 
defined as in (2.7). Then, for any s E C”[O, T] and any t E [0, T], 9, defined as 
above, is a maximal antimonotone graph; it is composed of the half-line 
{PE~*IP~+P~=~, p23maxrECo,rl Is(z and of an at most countable family of 
segments parallel to the axes which may accumulate just in a neighbourhood of the 
point (s(t), s(t)) E 9. 
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FIG. 2. Maximal antimonotone graph 3= LIP: n&F: (at any time instant f, 9(t) describes the 
internal state of the system). 

Due to these properties, it is easy to represent the evolution of 3(t) for any 
piecewise monotone continuous input functions s. These functions, however, form a 
dense subset of C”[O, T]. 

3. IDENTIFICATION OF THE MEASURE p 

3.1. Approximation of the Measure 

Let p be absolutely continuous with respect to the two-dimensional Lebesgue 
measure A. From the Radon-Nikodym theorem it follows that a positive function 
q E L’(9) exists such that p(A) =fA q(x) dp, for all measurable sets A E ~8. 
Obviously, this property is a sufficient (but not necessary) condition for (2.4); 
it entails (2.5) and (2.6), by Proposition 1. 

Let us assume that the support C of p is bounded, and let (.9&j,, N be a family 
of partitions of C by rectangles with the property that 

6,:=max(diamBIB~9,,,}-+0, as m+03. 

For any m G N and for almost any p EC, we denote by B, the element of 9?, sue 
that p E B,, and we set 

mu 
4B,) 

if PEC, 
cpm(P) := (3.1) 

0 if p E~\C. 
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Clearly, (P& + q, strongly in L’(9), as m -+ co. Hence, setting dp, := qrn .d;l, for 
any s E C”[O, T] and for any w” E Y we have, by (2.3), 

~j+Q, w”) -+ M/As, wok as m+co, (3.2) 

uniformly in [0, T] and uniformly with respect to s E C”[O, 7’1. 
Thus the convergence properties of this approximation are quite satisfactory. 

In order to implement it, we have to evaluate p(B) for any BE gM. This will 
require several tests, each consisting in applying a (finite) sequence of “inputs” and 
measuring the corresponding “outputs.” 

In the case of ferromagnetism, one can take a toroidal sample of the material 
under consideration and wire a conducting coil around it. The input here 
corresponds to the intensity of the magnetic field H, which is proportional to the 
intensity of the electric current circulating in the wire. The output is the 
magnetization field M which (more precisely, the magnetic induction 
B := p. H + YXM) can be measured by a standard procedure. 

There are two basic strategies for conducting these tests: 

(i) ,u(B) can be evaluated separately for each BE 9S’m by means of a simple 
test, as in Biorci and Pescetti [4-61. 

(ii) ,u(B) can be evaluated simultaneously for all B E 9m by means of a more 
complex test. 

The second strategy allows to reduce the overall number of measurements. 
We notice that the procedure described above can be used also in the more 

general case where (2.4) holds, but p is not necessarily absolutely continuous with 
respect to the Lebesgue measure 2; however, it is not obvious then that the 
convergence property (3.2) is still satisfied. 

3.2. The Evaluation Procedure 

As a particularly convenient partition 9& of Z; let us consider a mesh parallel to 
the axes; we also assume that the width of this mesh is uniform and equal to 
h := (IZILI + IZRI)/2m, for the sake of simplicity. Then we have to compute ,u,JB), 
for any BE J?&. We may assume that C is contained in a rectangle. As “input 
functions” a finite family of polygons s; (n = 1,2, . . . . 4m) on R, is defined by 

ICLI + 124 Sk(O) := 2 ) n = 1, 2, . . . . 4m, 
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linear in the subinterval [2k - 1, 2k] and constant outside. To complete this family 
of polygons we introduce 

$$+qt) := -S;+j+yt), j = 1, . . . . 2m. (3.4) 

Some elements of this family, as well as their corresponding traces in the Preisac 
plane 9’ are depicted in Fig. 3. 

Let the measurements corresponding to the “input function” S; at time instant 
!=z be denoted by U,(Z) and [v,];; := u,(z,) - v,(z2). The squares in the par 
=%m will be labeled from right to left and from top to bottom, using double i 
as indicated in Fig. 3. Accordingly, the approximation for the value of the function 
~0 on the square B, is denoted by ‘pg. 

Next we illustrate the algorithm which computes all the values ‘pii for the 
example m = 4 (Fig. 3). 

[WI: = Yll 
b31: = ‘111+y12 
[WI: = w+w2+ (013 [=%I; = P22 
b5li = w+‘p12+ p13+p14 [%I; = Y22-w23 

[%I; = P1l+Pl2+ y13+y14+ YlS [%I; = s922+923+$924 

hl: = ~ll+~lz+ 1013+p14+ ~~~~~~~ [WI: = $922+(P23+y24+ y23 

Lz181i = Yll+P12+ P13+P14+ YlsSp16Sp17 [U*]z = $?22+~23+y24+ (p25+p26 

[fJL?lj = (P33 

[WI:: = $733+‘p34 

b6l’j = v33+p34+ Y35 [WI; = 944 

m(3)- b(2)= y1s 

~8W v9(4)= Yl8+1027 

m(7)- %(6)= y18+y27++936 

b91: = p28+(P38+ (048+(058+ ~68+(p78+$‘88 [V9]; = 937+947+%7+ $967+977 

iwo1: = (P33+ (P48+v58+ Y68+y78+y88 [z)lO]~ = $%7+Lp57+ 937+y.77 

[WI: = v48+Lp58+ Y68+ws+y88 [WI; = y57+ Y67+(177 

[W2]: = ipSS+ $‘68+W8+P88 id: = YU+W? 

[ml; = $968+(P78++‘88 [%3]; = n-7 

[ml: = Y78-tY88 
bEI; = Y88 

b]: = %6+(p56+ Lp66 [%I’: = Y55 

[ml!: = (P56+ P66 

[ 0111: = P66 

These equations can be solved successively for cpii, where one should remark that 
the nine blocks of equations can be solved independently of each other. Therefore 
the algorithm can be very well adapted to parallel computing. 
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;I I 

i!-------LL. 

FIG. 3. “Input functions” s:, s:, s:, S& s:‘, 3:” and corresponding traces 59(t) in the Preisach plane. 
Labels of the squares in the discretization. 

In the general situation for arbitrary m one has to evaluate the following 
formulas : 

cp = [Q.]“:- 1. u J 2/+19 j= 1, 2, . . . . m 

cPkj=[Zli+k-“j+k-ll~~+:; j = (k + 1 ), . ..) 2m-k, k=l,2 ,..., m-l 
(3.5) 

($I..= [v2._1]2’:“. 
I I  J 2J 1, j=m+ 1, . . . . 2m 

4Dj,2m~k+l=[vj+2m-k-vj+2m-k+~]~~~~; j=k+1,...,2m-k, k=l,2,...,m-1 

(3.6) 

(P1,2m=2)2m(3)-v2m+1(2) 

p2 -.=[v, -pi+* 
(3.7) 

1. m J WI 2J+1 - cv *m+11g+2; j=l,2,...,m-1 

The total number of squares where q has to be calculated is m(2m + l), and the 
total number of turning points of the function sk which are necessary in our 
procedure is 2m(2m + 1) - 2. If the elficiency of the algorithm is defined as the ratio 
between the number of squares to be evaluated and the number of necessary 
elementary operations (= the total number of the turning points of the inputs), our 
procedure has an efficiency which is asymptotically equal to 2. This means that we 
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FIG. 4. “Input functions” and their corresponding 9(t) in the Preisach plane for the Biorci-Pescetti 
method. 

asymptotically need one input function to calculate cp on a single square. Thus we 
have the statement: 

PROPOSITION 3. The algorithm (3.5), (3.6), (3.7) is optimal in the sense of the 
minimal number of elementary operations which are necessary to calculate q 

In contrast to our algorithm which simultaneously computes all of q, Biorci and 
Pescetti proposed in their papers a method to calculate ~0 at one single 
p = (p,, p2) E 9. To explain their method, let us assume that the virginal state of 
the system is again defined by (2.4). Then choose a steplength h > 0 and substitute 
the two “input functions” si, S: into the system, measuring the corresponding “out- 
put values” u:(i), u:(i) (i = 1, 2, 3). The polygons si (j = 1,2) are defined by their 
vertices : 

Sk(O) = 0, ~;(l)=p,+k $c7-) = p1-k k $63) = ~2 - h, 
s;(o) = 0, s;(l)=p2+h, $2) = p1- h, s;(3) = p2 - h. 

The function value q(p) is obtained by the difference 

v;(3) -u;(3). 

Clearly this algorithm has the complexity 4 according to our definition of efficiency. 
This means that two “input functions” are necessary to measure one square (com- 
pare Fig. 4). 

4. NUMERICAL EXPERIMENTS 

We have tested our method in a series of numerical experiments, and we present 
a small selection of the results. The accuracy of the approximations was very 
satisfactory; the only significant deviations from the true measure were observed in 
a small neighbourhood (corresponding to the mesh-width of the grid) of the boun- 



224 HOFFMANN, SPREKELS, AND VISINTIN 

dary of the support of cp. This is caused by the fact that only parts of the boundary 
squares of the discretization are contained in the support of p. Therefore the 
(constant) value of CJI on these squares is also smeared over those parts of the 
squares where the true cp is equal to zero. With refinements of the grid these errors 
decrease. 

Our experiments are performed as follows: First we simulate measurements u,(z) 
by prescribing a measure p (resp. a function cp) and substituting the “input 
functions” (3.3), (3.4) into formula (2.3). After that, we forget cp and recover it 

44 o 
-2 -1 0 1 20 1 2 3 4 

FIG. 5. Example 1. 

ws44) 
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FIG. 5-Continued. 
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approximatively by evaluating formulas (3.5), (3.6), (3.7) according to our 
algorithm. The plots at the end of this paper show our results. Therefore the 
meaning of the letters (a), (b), . . . in the figures for Examples l-3 is: 

(a) the true function cp, 
(b) the hysteresis loop corresponding to cp, 
(c) the “input function,” which produces this loop, 
(d) the “output function” corresponding to this loop, 

.5 10 .2 .4 .6 .o 

FIG. 6. Example 2. 
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(e) the test “input functions” s;(t), 
(f) the values of the corresponding “output function,” 
(g) the trace 9(t) in the Preisach plane 8, 
(h) the corresponding path within the hysteresis loop, 
(i) the identified function cp. 

EXAMPLE 1. ZL = -2, ZR = 2, m = 20: (p(pI, p2) :r 1 for p E Z. 

.lS 

.lO 

.OS 

0. 

sit) 0 

-1 -1 -.s -.s 0 0 .s .s 10 10 .OS .OS .10 .10 .I5 .I5 

FIG. FIG. 7. 7. Example Example 3. 3. 
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FIG. 7-Confirmed. 
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EXAMPLE 2. CL = -1, ER = 1, m = 10: q(pl, p2) := cos((7c/2)p1) ~cos((7c/2)p,) 
for ~E.Z. 

EXAMPLE 3. XL= -1, ZR= 1, m=20: q(pl,pz) := 1 for ~EC. 

Concluding Remarks. (i) A simpler identification procedure can be used if cp is 
of the form 

for all (pl, p2) E 8; indeed, in this case, for any non-decreasing (non-increasing, 
respectively) s E Co [0, T], we have 

Hence, taking SE C’[O, T] and s’#O, one obtains 

-$ W,( $2 wO)l(t) = cp,(s(t)) .s’(t) (i = 2 or 1, respectively). 

(ii) The Preisach model of hysteresis can possibly be used to identify the 
composition of an alloy (“Preisach spectograph”). To explain this, let us consider 
an alloy of two ferromagnetic materials A, B; let pLA and pLg be the corresponding 
measures in the Preisach plane. If a is the percentage of A in the alloy, then, in a 
first approximation, the measure corresponding to the alloy is /J = apA + (1 - a)~~. 
Therefore the identification of ,D allows to establish the percentage a of the alloy. 
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